Exercise 19

Compute Δy and $d y$ for the given values of x and $d x=\Delta x$. Then sketch a diagram like Figure 5 showing the line segments with lengths $d x, d y$, and Δy.

$$
y=x^{2}-4 x, \quad x=3, \quad \Delta x=0.5
$$

Solution

Compute the derivative of y.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(x^{2}-4 x\right) \\
& =2 x-4
\end{aligned}
$$

Consequently, the differential of $y=x^{2}-4 x$ is

$$
d y=(2 x-4) d x
$$

so when $x=3$ and $\Delta x=d x=0.5$,

$$
\begin{aligned}
d y & =[2(3)-4](0.5)=1 \\
\Delta y & =y(3+0.5)-y(3)=\left[(3+0.5)^{2}-4(3+0.5)\right]-\left[(3)^{2}-4(3)\right]=1.25 .
\end{aligned}
$$

The function is plotted below along with its tangent line at $x=3$.

